Bayesian estimation in Kibble's bivariate gamma distribution
نویسندگان
چکیده
The authors describe Bayesian estimation for the parameters of the bivariate gamma distribution due to Kibble (1941). The density of this distribution can be written as a mixture, which allows for a sim ple data augmentation scheme. The authors propose a Markov chain Monte Carlo algorithm to facilitate estimation. They show that the resulting chain is geometrically ergodic, and thus a regenerative sampling procedure is applicable, which allows for estimation of the standard errors of the ergodic means. They develop Bayesian hypothesis testing procedures to test both the dependence hypothesis of the two variables and the hypothesis of equal means. They also propose a reversible jump Markov chain Monte Carlo algo rithm to carry out the model selection problem. Finally, they use sets of real and simulated data to illustrate their methodology. Estimation bay?sienne pour la loi gamma bivari?e de Kibble R?sum? : Les auteurs montrent comment estimer de fa?on bay?sienne les param?tres de la loi gamma biva ri?e de Kibble (1941). La densit? de cette loi peut s'exprimer comme un m?lange, ce qui permet l'emploi d'un proc?d? simple d'augmentation de donn?es. Les auteurs proposent un algorithme de Monte-Carlo ? cha?ne de Markov pour faciliter l'estimation. Ils montrent que la cha?ne r?sultante est g?om?triquement ergodique, d'o? la possibilit? de recourir ? une proc?dure d'?chantillonnage regenerative pour l'estimation des erreurs types des moyennes ergodiques. Ils ?laborent des proc?dures bay?siennes en vue de tester ? la fois l'hypoth?se de d?pendance entre les deux variables et l'?galit? de leurs moyennes. Us proposent aussi un algorithme de Monte-Carlo ? cha?ne de Markov ? sauts r?versibles aux fins de s?lection de mod?le. Enfin, ils ont recours ? des jeux de donn?es r?elles et simul?es pour illustrer leur m?thodologie.
منابع مشابه
The maximum distribution of Kibble's bivariate gamma random vector
The joint probability density function of a random vector (Y1, Y2) following Kibble’s bivariate gamma distribution (BGD) with parameters α, μ1, μ2 and ρ, is given by fY1,Y2(y1, y2) = (μ1μ2) α (1− ρ)Γ(α) ( y1y2 ρμ1μ2 )α−1 2 exp ( − μ1y1 + μ2y2 1− ρ ) Iα−1 ( 2 √ ρμ1μ2y1y2 1− ρ ) , for y1 > 0, y2 > 0, where Γ(α) is the gamma function defined as Γ(α) = ∫∞ 0 t α−1e−tdt, and Iα(·) is the modified Bes...
متن کاملBayesian Estimation of Parameters for Bivariate Gompertz Regression Model with Shared Gamma Frailty under Random Censoring
In this paper, we consider shared gamma frailty model with Gompertz distribution as baseline hazard for bivariate survival times. The problem of analyzing and estimating parameters of bivariate Gompertz distribution with shared gamma frailty is of interest and the focus of this paper. We solve the inferential problem in a Bayesian framework with the help of a comprehensive simulation study. We ...
متن کاملBayesian Estimation of Shift Point in Shape Parameter of Inverse Gaussian Distribution Under Different Loss Functions
In this paper, a Bayesian approach is proposed for shift point detection in an inverse Gaussian distribution. In this study, the mean parameter of inverse Gaussian distribution is assumed to be constant and shift points in shape parameter is considered. First the posterior distribution of shape parameter is obtained. Then the Bayes estimators are derived under a class of priors and using variou...
متن کاملA Bayesian mixture model for classification of certain and uncertain data
There are different types of classification methods for classifying the certain data. All the time the value of the variables is not certain and they may belong to the interval that is called uncertain data. In recent years, by assuming the distribution of the uncertain data is normal, there are several estimation for the mean and variance of this distribution. In this paper, we co...
متن کاملModeling heterogeneity for bivariate survival data by shared gamma frailty regression model
In the analysis of survival data with parametric models, it is well known that the Weibull model is not suitable for modeling survival data where the hazard rate is non-monotonic. For such cases, where hazard rates are bathtub-shaped or unimodal (or hump-shaped), log-logistic, lognormal, Birnbaun-Saunders, and inverse Gaussian models are used for the computational simplicity and popularity amon...
متن کامل